MATH 53H - Solutions to Problem Set IV

1. You can find proofs for the claims of the Problem in the textbook of the course (Brendle, Theorem 3.1, pages 26-28).

2. Claim $||x_{k+1} - x_k|| \le \frac{1}{2^k} ||x_1 - x_0||$. Proof We use induction on k. For k = 0 the claim is clear. Since

$$||x_{k+1} - x_k|| = ||F(x_k) - F(x_{k-1})|| \le \frac{1}{2} ||x_k - x_{k-1}||$$

the induction step is clear as well. \Box

A standard telescoping argument together with the claim show that the sequence x_k is Cauchy and therefore converges to some $\overline{x} \in U$. Then taking the limit as $k \to \infty$ in $x_k = F(x_{k-1})$ shows that $F(\overline{x}) = \overline{x}$, as desired.

3. You can find proofs for the claims of the Problem in the textbook of the course (Brendle, Theorem 3.2, pages 28-30).

4. You can find an argument in the textbook of the course (Brendle, Theorem 3.6, Lemmas 3.7-3.9, pages 32-35).