MATH 53H - Solutions to Problem Set IV

1. You can find proofs for the claims of the Problem in the textbook of the course (Brendle, Theorem 3.1, pages 26-28).
2. Claim $\left\|x_{k+1}-x_{k}\right\| \leq \frac{1}{2^{k}}\left\|x_{1}-x_{0}\right\|$.

Proof We use induction on k. For $k=0$ the claim is clear. Since

$$
\left\|x_{k+1}-x_{k}\right\|=\left\|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right\| \leq \frac{1}{2}\left\|x_{k}-x_{k-1}\right\|
$$

the induction step is clear as well.
A standard telescoping argument together with the claim show that the sequence x_{k} is Cauchy and therefore converges to some $\bar{x} \in U$. Then taking the limit as $k \rightarrow \infty$ in $x_{k}=F\left(x_{k-1}\right)$ shows that $F(\bar{x})=\bar{x}$, as desired.
3. You can find proofs for the claims of the Problem in the textbook of the course (Brendle, Theorem 3.2, pages 28-30).
4. You can find an argument in the textbook of the course (Brendle, Theorem 3.6, Lemmas 3.7-3.9, pages 32-35).

